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LINDELOF MODELS OF THE REALS: 
SOLUTION TO A PROBLEM OF SIKORSKI 

BY 

LARRY MANEVITZ t AND ARNOLD W. MILLER 

ABSTRACT 

We show that it is consistent with ZFC that there is a model M of ZF + DC such 
that the integers of M are w~-like, the reals of M have cardinality o~2, and the 
unit interval [0,1] M is Lindel6f (i.e. every open cover has a countable subcover). 
This answers an old question of Sikorski. 

Introduction and history 

Sikorski  in a series of papers  ([16], [17], [18]) a t t e m p t e d  to general ize  algebraic  

(i.e. o rde red  a r ch imedean  fields) and topological  (i.e. Bo lzano-Weie r s t r auss ,  

metr ic)  p roper t ies  of the real  n u m b e r  line. The  basic t heme  of his p r o g r a m  

s e e m e d  to be the idea that  the cardinals (o9, o91) should be  rep laceab le  by (o91, o92). 

T w o  definit ions of his are  per t inent  here:  

( t )  A n  o rde r ed  field has character o91 if it has an u n b o u n d e d  subset  of o rde r  

type o91. 

(2) A n  o rde red  field has the BW1 property (after  Bo lzano-Weie r s t r auss )  if it 

has charac te r  o91 and every  b o u n d e d  o9,-sequence of e lements  of F contains  a 

convergen t  subsequence .  

Previous  results: 

(1) (Sikorski  [16]) The re  are BWl-fields.  

(2) (Sikorski [17]) The  real closure and the a lgebraic  closure of a BWl-field is a 

BWt-field.  

T h e  genera l iza t ion  of a metr ic  to that  of ogl-metrizable space was done  by 

Sikorski  [18]. H e  also defined a space to be  o91-compact ( =  Lindel6f)  if every  

open  cover  has a countab le  subcover .  

Sikorski  asked  [18, p. 132] if there  was an example  of an o91-metrizable 

o91-compact space of cardinal i ty > o91. 
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(3) (Juhasz-Weiss [8]) There is an tormetrizable Lindel6f space of cardinality 

> to1 if and only if there is a Kurepa tree with no Aronszajn subtrees. (Thus by 

results of Silver [19] and Jensen (see Devlin [7]) the existence of such a space is 

independent of the usual axioms for set theory.) 

Sikorski [16, p. 88] also raised the question as to the existence of a BW~-field of 

cardinality > to1. 

(4) (Cowles-LeGrange [10]) Showed that any closed bounded interval of a 

BW~-field is an tol-metrizable Lindel6f space. (Thus by (3) a positive answer to 

Sikorski's question would imply the existence of a Kurepa tree with no 

Aronszajn subtrees.) 

Our main result here, as stated in the abstract, thus answers Sikorski's 

question by showing that it is independent of the usual notions of set theory. 

Essentially the idea of our proof is that if we can build for every model of 

ZF + DC an elementary extension such that 

(a) the natural numbers are an end-extension of the old integers and 

(b) every new real in [0, 1] is infnitesimally close to an old real (this is Lemma 

1) 

then under iteration property (b) will give us a model with the Lindel6f property 

while property (a) will give us natural numbers which are tol-like. (This is 

Theorem 2.) 
Our full result though requires that the reals have cardinality -> to2. We obtain 

this via a forcing argument. The idea is that our conditions are essentially models 

of set theory and we can use Lemma 1 and a non-standard version of an 

embedding result of Friedman and Woodin to show that a model with the 

desired reals and integers is added. 

This paper was written while Manevitz was visiting The University of Texas 

Mathematics Department whom he thanks for their gracious hospitality. 

The results 

1. LEMMA. Suppose M is a countable model of ZF + DC. Then there exists N 

an elementary extension of M such that to N is a proper end extension of ~o M and 

every x @ [0, 1] ~ is infinitesimally close to some y E[0,1] M (i.e. there exists 

n E t o N - - t o  M with I x - y l < l / n ) .  

PROOF. Build Z,  E M for n < to such that Z,+I C_ Z, ,  M ~ " Z ,  E [to]~", and 

for every f E M such that M ~ " f  : to --~ [0, 1]", there exists n < to such that 

M ~ " f ( Z , )  is a convergent sequence". 
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Also, construct the Z .  so that for every m E wM there exists n < to such that 

Z.  f) m = Q. Now let T = T h ( M ) +  {c E Z,},<~ where Th(M)  is the full theory 

M and c is a new constant symbol. Clearly T is consistent and c is a new integer. 

Let N* be any model of T. Now let N = {x E N* : 3 f  E M, M ~ " f  : to ~ M "  

and N* ~ " f ( c )  = x"}. Because of the constant functions we have that M C_ N C_ 

N*.  

1.1. CLAIM. N <~ N*.  

PROOF. This is true because of countable choice holding in M and the 

Tarski -Vaught  criteria. Suppose N* ~ 3xO(x, f (c)) .  Then in M find g : tom ~ M 

such that m ~ "Vn E to if 3x 0 (x, f (n)) ,  then 0 (g (n), f (n) )" .  Since M ~< N* we 

have that N* ~ " O ( g ( c ) , f ( c ) ) " .  

1.2. CLAIM. tO N is an end extension of to M. 

PROOF. If n <tOm and f ( c ) < n ,  then for some m, f (Zm)  is eventually 

constant, so f ( c )  E M. [] 

1.3, CLAIM. Every y E [0, 1] N is infinitesimally close to some x E [0, 1] M. 

PROOF. If y =f (C) ,  then for some n Eto, f ( Z , )  converges to x E M and 

therefore y is infinitesimally close to x. [] 

These claims prove the Lemma.  [] 

Kunen pointed out to us that if M contains a non-principal ultrafilter U on 

tOM, then an easier proof can be given. Just let N be the M-ul t rapower  of M with 

respect to U. (I.e. N = ( M  A M~) /U. )  Note that our proof only needed that M 

model countable choice. Is any choice needed? ( U  could be added generically 

since M in a model of DC.) 

As an application of Lemma  1 (before using it for our main result) we prove 

the following Theorem.  

2. THEOREM. Let M be any countable model of ZF + DC. Then there exists an 

elementary extension N of M such that tOn is tO~-like and [0, 1] N is Lindel6f. 

PROOF. Build a chain of countable e lementary extensions of M, M~ for 

a < w~ such that Mo = M, M, = [,.J,<, Ms for each limit ordinal )t, for ot </3, 

toMe is an end extension of toM°, and for each a < tol every y E [0, 1] M~+, is 

infinitesimally close to some x E [0, 1] ~ .  Now let N = U . . . .  M~. To see that 

[0, 1] N is Lindel6f, let 07/ be an open cover of [0, 1] N. Without loss of generality 

we may assume that the elements of q/ are open intervals with rational 
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endpoints and so q/C_ N. By a Lowenheim-Skolem argument find a < to1 such 

that Vx ~ [0, 1] Na there exists I E 0//fq N~ such that x E I. 

2.1. CLAIM. all fq N,, covers [0, 1] N. 

PROOF. Since every y E [0, 1] ~÷, is infinitesimally close to some x E [0, 1] ~,  

it follows that q/fq N~ still covers [0, 1] No+,. Also since ~o No÷, is a proper  end 

extension of to~  there exists k E ~ o ~ * , - t o  No. It is easy to see that 

{[I/k, (l + 1)/k] : 0 _-< l =< k} refines q/fq N~ and since ~o N is an end extension of 

~o No*,, for every x E [0, 1] N there exists I E to N such that I / k  <= x <= (l + 1)/k. []  

Now since ag was an arbitrary open cover the Theorem is proved. []  

This result is similar to that of Keisler [9[ section 3 where it is shown that Q,,  

implies that there is an tol-like model of ZFC such that every class over the 

model is definable. (Shelah [13] eliminates O,, from the proof.) It is also like 

Schmerl [11] theorem 1.5 which proves that there are to~-Iike models of 

arithmetic in which every class is definable. 

We are now going to try to construct models of ZF, M such that ~o M is tol-like 

and R M has cardinality ~ to2. Note however that the set (2<~) M contains a 

Kurepa tree (i.e. a tree of countable width, height to~, and having _-__ oJ2 

branches). Hence we can only give consistency results. It is easy to modify the 

results of Keisler [9[ corollary 4.4 to obtain such a model from the existence of a 

Kurepa tree. Also the existence of such a model follows the transfer theorem: 

(to-like, to~-like) --+ (to,-like, toz-like) 

which Burgess and Silver have shown is true if V = L (see Burgess [1]). 

We also desire that [0, 1] M be Lindel6f (thus transferring to-compactness up to 

to,-compactness). The  method of proof is similar to that of forcing a generic 

Kurepa tree. Such a tree contains no Aronszajn subtrees (see Todoreevi6 [21]). 

The next Lemma is needed for our proof. It is the nonstandard version of an 

unpublished result due to H. Friedman and H. Woodin. BP stands for the 

proposition that every set of reals has the Baire property. BUNIF stands for the 

property that for every relation R C_ R x X (R is the reals and X any set), if for 

every r E R there exists x E X such that (r, x)  ~ R, then there exists a comeager 

set G and a function f : G --+ X such that for all r E R, (r, f ( r ) )  E R.  That is, 

BUNIF says that every relation is uniformizable on a comeager set. BUNIF  is 

true in Solovay's model (Solovay [20]) where an inaccessible is collapsed to co~. It 

is also true in Shelah's model in which every set of reals has the Baire property 

(Shelah [14]). This was pointed out to us by M. Magidor. 
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3. LEMMA (Friedman, Woodin). Suppose M ~ "ZF  + DC + V = 

L[R] + BP + BUNIF"  and G is Cohen generic over M (i.e. via the usual countable 
partial order). Then there is an elementary embedding of M into L[R] MIoJ. 

PROOF. The partial order is the set of open intervals in R with rational end 

points. Working in M[G], define U = { A E P ( R )  D M :  Z l p EG,  p f q A  is 

eomeager in p}. Form the ultrapower 

N = (M D MaM)/U. 

This structure is gotten by starting with all functions f : R M --) M which are in M 

and then defining an equivalence relation 

f =- g iff {x ~ R  M : / ( x ) =  g(x)}E V 

and a binary relation 

[f] e [g] ill {x E R  ~ : f ( x ) E g ( x ) } E  U. 

As usual define j : M--~ N by taking x E M into the equivalence class of the 

constant function everywhere equal to x. Working in M[G] we prove the 

following three claims. 

3.1. CLAIM. j is an elementary embedding. 

PROOF. As usual, it is proved by induction on logical complexity that for any 

formula 0@1, v2," ", v,) and f~,f2,'" ",f.: 

N ~ 0([f~], If2],"" ", [/,]) 
ill 

{x E R  ~ : M &  O(f~(x),f2(x),..-,f, (x))} E U. 

For 0 an atomic formula this follows from the definition of N. The m and ^ case 

are handled by noticing that BP and the genericity of G imply U is an ultrafilter. 

The existential case is easily proved using BUNIF. [] 

3.2. CLAIM. N is well-]:ounded. 

PROOF. It is enough to note that j maps the ordinals of M onto the ordinals 

of N. We use the well known fact that BP implies that the well-ordered union of 

meager sets is meager. Suppose a is an ordinal of M and [ : R ~ D p ~ a,  [ ~ M, 

and p E P. 

Then there exists q < p  and /3 < a such that [ - l ( /3)Dq is comeager in q. 

Hence by genericity of G evey ordinal of N less than ./(a) is a ./(/3) for some 

/3<~. [] 
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3.3. CLAIM. N is isomorphic to L [R] MI~j via the transitive collapse of E. 

PROOF. It suffices to show G E N since every real in M[G] is in L[x, G] for 

some real x in M. But [Id] is mapped to G where Id:R---~R is the identity 

mapping. [] 

Although we have used " E "  for the membership  relation in M there is 

nothing in the proof that requires that M be a standard model. Most popular 

expositions of forcing (e.g. Shoenfield [15] and Burgess [2]) construct the model 

M[G] by induction on rank, which can' t  be done if M is nonstandard. However  

forcing can be defined syntactically in M and for a generic G, M[G] can be 

taken to be what it is forced to be. That  is, if we look at all terms in forcing the 

language and define ~.o = o ~  iff there exists p E G such that p I~-"~- = o-" and 

~.c ~ o.G iff there exists p E G such that p IF"~- C o-", then we get the model 

M[G]. See Cohen [5] for a result using forcing over nonstandard models. This 

finishes the proof of Lemma  3. [] 

Let D A D  stand for the proposit ion that every set of reals definable from an 

w-sequence of ordinals is determined. Friedman and Woodin used this lemma to 

prove that Con(ZFC + D A D )  implies Con(ZFC + --n C H  + DAD) .  

After  receiving an earlier version of this paper  Hugh Woodin pointed out to us 

that we could have gotten by with a simpler version of Lemma  3. All we need is 

some condition on our models of set theory, M, so that if G is Cohen over M, 

then there is an elementary embedding of M into L [R] Mt°J. This will be true if 

M = L[R]  L~m where H is generic over  L for adding col Cohen reals. Also, it 

suffices that M models ZF  + DC + V = L[R] + for every nonconstructible real x 

there exists a real c, Cohen over L, such that L[x] = L[c]. Woodin 's  remarks 

also reminded us of a paper  of P. E. Cohen [6] where some related results are 

proved. 

Now we state the main result of this paper.  

4. THEOREM. Suppose CH is true and Mo is a countable model of " Z F  + DC + 

BP + B U N I F  + V = L[R]". Then there exist a partial order P such that P has the 

to2-c.c., forcing with P adds no subset of o9, and forcing with P adds a model N 

which is an elementary extension of M such that w N is tol-like, [0, 1] N has 

cardinality w2, and [0, 1] N is Lindel6f. 

PROOF. A condition p E P consists of a countable model Mp with universe a 

countable ordinal which elementarily extends Mo and a function fp :Ee--> Mr 

where ~p is a countable subset of to2 and for each a E Zp, fp ( a )  is an open 
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interval of [0, 11% with rational end points. We define t7 <-p if[ Mp is an 

elementary substructure of M0, ~o ~, is an end extension of o)~, Ep D Ep, and for 

each a C E , ,  f~(a)C_ f , ( a ) .  

4.1. LEMMA. P has o22-c.c. 

PROOF. Given o)2 conditions p, for a < w2, then if we assume the continuum 

hypothesis, then there are only w~ possible Mp. Consequently we can assume 

Mp. = Mp~ for all a and ft. By the A-systems lemma we can find E and F C [w2] ~'- 

such that for all a, fl E F, E~ f3 ~ = E and fpo I E = f~ 1" E. (See, for example, 

Burgess [2], 3.6.) But now for any a,/3 E F, p~ and p~ are compatible. [] 

For the next two lemmas it may be useful to refer to the following diagram of 

models 

(~oM: = ~o M:+,) 

M C M ~  C M ~  . . . C M *  C_f,I e 

: (Every real in ~/infini tesimally close to a real of M*) 

Ms 
UI 
Mp, (o) M., end extends ~o M,) 

U~ 

Mpo 

4.2. LEMMA. P is ~ol-Baire (i.e. the countable intersection of  open dense sets is 

dense) .  

PROOF. Suppose D,  _C P for n < w are open dense. For any po ~ P construct 

a sequence p,+l --<p, with p,+l E D..  Let M = U,<~Mp. and E = U,<~  Ep.  Let  

Q be the usual Cohen order,  i.e. the partial order of open intervals with rational 

end points. For each a C E let G~ be the filter generated in QM by {f, ( a ) : a  E 

Ep.}. By a dovetailing argument make sure that for each n < ~o 

( a : , a 2 , . . . , a , ) E E " ,  and D @ M  

such that M N " D  is dense open C_ Q" ", there exists some m < o) such that 

Me. ~= "(fp. (al) , fp .  (a2) , ' '  ",fpm (a , ) )  E O " .  

Thus any finite sequence of the G~'s is Cohen generic over M. Let  E = {an : n < 

w}. Let M* = M and for each n < ~o let 

Mff+l = L [R]  M"t°"l . 
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By Lemma 3, M* is elementarily embedded into M,*÷l (by a map fixing ordinals 

and therefore reals). Let M* = I,.J,<oM*, (or more precisely the direct limit). 

Then 

M<~M * 

and 60M = 60M'. NOW let )~/be an elementary extension of M* such that 60~ is a 

proper end extension of 60M* and e = l / k  where k ~60M_60M* Define 

f :E---~ 5~/ by f (a )=  (r~, s,) where (r=, so) is any rational interval about the 

Cohen real determined by G~ of diameter less than e. Then (/f/,f) is condition 
extending each p,. [] 

Suppose G is P-generic over the universe V and let N* = I,.J{Mp :p E G}. 

Clearly 60 N" is 601-like and by an easy genericity argument for all finite sequences 

(al, a2,'" " ,a,)E 602, (G,,, G~2,'.', G~.) is Cohen-generic over N*. Hence by 

Lemma 3 and an extension of the elementary chain lemma to directed families 

(see Chang and Keisler [4], 3.1.9) we can construct a model N which is an 

elementary extension N*, each G, E N and every real of N is in 

N*[G,,,," ", G~.] for some finite sequence (al, a 2 , "  ", a , )  in 602. Our final lemma 
finishes the proof of Theorem 4. 

4.3. LEMMA. [0, 1] N is Lindel6f. 

PROOF. This proof is just a slightly more complicated version of the proof of 
Lemma 4.2. Suppose 

po I~-" U is a cover of [0, 1] N by open intervals with rational end points". 

Build the sequence p, as in Lemma 4.2. Also make sure (by dovetailing) that for 

all n < 60, finite sequences (otl, a2 , . . . ,  a , )  from ~, and for all terms ~- for an 

element of [0, 1] Ml6~,'°°-'''6°-] there exists m < 60 and a rational interval I in Mpm 

such that p,, IF " I  @ U"  and 

(f,, (a 3, f~m (a~), " " ", f~. (a-)) JF"r ~ r ' .  

As in the proof of Lemma 4.2 let M~ = M  and M*+l =L[R]M'E°-, 1 where 

= { a ,  : n  < 60}, and let M * =  I,.J.<,oM*. Now let ]~/ be an elementary end 

extension of M* such that 60~a is a proper end extension of 60M" and for all 

x E[O, 1] ~ there exists y E[O, 1] M" and k E60 ~ - t o  M* such that I x - y [ <  1/k 
(such an extension is given b3~ Lemma 1). As before let e = 1/k for some 

k E to M. -  60M and let f "  E---> ~ /  be defined by choosing any rational interval 

f (a)  about G. of diameter less than e. Then p = (]f/, f )  is a condition extending 

each p, and by construction there exists a countable set V of open intervals with 
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rational end points such that V C M*, V covers [0, 1] M', and p II-"V C_ U" .  

Since the diameters of things in V are not infinitesimal, it is clear that V covers 

[0, 1] M" also. By the same argument as Claim 2.1 we have that V covers [0, 1] N. 
[]  

Concluding remarks 

Reading Sikorski's papers leaves one with the idea that he had some general 

cardinality transfer principle in mind. Thus compact becomes Lindel6f, metriza- 

ble becomes tol-metrizable. As we pointed out a model M with to M tol-like and 

the reals of cardinality _-> to2 does indeed follow from the two-cardinal transfer 

theorem of Burgess and Silver (Burgess [1]) (to-like, tol-like)---~ (tol-like, to2-1ike). 

It would be quite interesting to find a transfer result (possibly a three cardinal 

one) that holds in L and which would imply the existence of a model which has 

the above properties and is also Lindel6f. 

In an earlier version of this paper we conjectured that our results were true in 

L and probably provable from "morass with built-in O".  At our urging Dan 

Velleman has in fact shown this to be the case. He uses a stationary simplified 

morass with linear limits (see Velleman [22]). Also the paper of Shelah and 

Stanley on morasses with built-in ~ may shed some light on this. 

It would also be nice to remove the assumption that the model thinks that 

every set of reals has the Baire property or some other hypothesis as suggested 

by H. Woodin (see remark just above Theorem 4). We know of no result which 

suggests such an hypothesis is necessary. 
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